电脑版
首页

搜索 繁体

分节阅读_44

明不成立!冯诺伊曼关于隐函数理论无法对观测给出唯一确定的解的证明建立在5个前提假设上,在这5个假设中,前4个都是没有什么问题的,关键就在第5个那里。我们都知道,在量子力学里,对一个确定的系统进行观测,我们是无法得到一个确定的结果的,它按照随机性输出,每次的结果可能都不一样。但是我们可以按照公式计算出它的期望(平均)值。假如对于一个确定的态矢量Φ我们进行观测X,那么我们可以把它坍缩后的期望值写成。正如我们一再强调的那样,量子论是线性的,它可以叠加。如果我们进行了两次观测X,Y,它们的期望值也是线性的,即应该有关系:=+

但是在隐函数理论中,我们认为系统光由态矢量Φ来描述是不完全的,它还具有不可见的隐藏函数,或者隐藏的态矢量H。把H考虑进去后,每次观测的结果就不再随机,而是唯一确定的。现在,冯诺伊曼假设:对于确定的系统来说,即使包含了隐函数H之后,它们也是可以叠加的。即有:=+

这里的问题大大地有。对于前一个式子来说,我们讨论的是平均情况。也就是说,假如真的有隐函数H的话,那么我们单单考虑Φ时,它其实包含了所有的H的可能分布,得到的是关于H的平均值。但把具体的H考虑进去后,我们所说的就不是平均情况了!相反,考虑了H后,按照隐函数理论的精神,就无所谓期望值,而是每次都得到唯一的确定的结果。关键是,平均值可以相加,并不代表一个个单独的情况都能够相加!

Loading...

如果文章未全部加载,请关闭广告屏蔽或更换浏览器再试试~

推荐使用手机百度 or UC浏览器 or 火狐浏览器打开网址并收藏喔!

收藏网址:www.tantanshuwu.com

(*^__^*)

热门小说推荐

最近更新小说